Nuprl Lemma : strong-subtype-member

[A,B:Type]. ∀[b:B]. ∀[a:A].  {b ∈ supposing a ∈ B} supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] guard: {T} member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-subtype: strong-subtype(A;B) cand: c∧ B prop: subtype_rel: A ⊆B exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf strong-subtype_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination hypothesisEquality applyEquality isect_memberEquality because_Cache universeEquality dependent_pairFormation dependent_set_memberEquality lambdaEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].  \mforall{}[a:A].    \{b  \mmember{}  A  supposing  b  =  a\}  supposing  strong-subtype(A;B)



Date html generated: 2016_05_13-PM-04_11_39
Last ObjectModification: 2015_12_26-AM-11_12_25

Theory : subtype_1


Home Index