Nuprl Lemma : t-sqle-apply

[A,B:Type].  ∀a1,a2:A. ∀f1,f2:a:A ⟶ B.  (t-sqle(a:A ⟶ B;f1;f2)  t-sqle(A;a1;a2)  t-sqle(B;f1 a1;f2 a2))


Proof




Definitions occuring in Statement :  t-sqle: t-sqle(T;a;b) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q t-sqle: t-sqle(T;a;b) squash: T exists: x:A. B[x] per-class: per-class(T;a) prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  t-sqle_wf base_wf exists_wf sqle_wf_base is-exception_wf has-value_wf_base equal-wf-base-T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination productElimination thin setElimination rename dependent_pairFormation applyEquality equalitySymmetry hypothesis dependent_set_memberEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality lemma_by_obid isectElimination equalityTransitivity divergentSqle sqleRule setEquality lambdaEquality because_Cache imageMemberEquality functionEquality dependent_functionElimination universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}a1,a2:A.  \mforall{}f1,f2:a:A  {}\mrightarrow{}  B.    (t-sqle(a:A  {}\mrightarrow{}  B;f1;f2)  {}\mRightarrow{}  t-sqle(A;a1;a2)  {}\mRightarrow{}  t-sqle(B;f1  a1;f2  a2))



Date html generated: 2016_05_13-PM-04_12_54
Last ObjectModification: 2016_01_14-PM-07_28_48

Theory : subtype_1


Home Index