Nuprl Lemma : t-sqle-apply
∀[A,B:Type].  ∀a1,a2:A. ∀f1,f2:a:A ⟶ B.  (t-sqle(a:A ⟶ B;f1;f2) 
⇒ t-sqle(A;a1;a2) 
⇒ t-sqle(B;f1 a1;f2 a2))
Proof
Definitions occuring in Statement : 
t-sqle: t-sqle(T;a;b)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
t-sqle: t-sqle(T;a;b)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
per-class: per-class(T;a)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
t-sqle_wf, 
base_wf, 
exists_wf, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base, 
equal-wf-base-T
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
setElimination, 
rename, 
dependent_pairFormation, 
applyEquality, 
equalitySymmetry, 
hypothesis, 
dependent_set_memberEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
divergentSqle, 
sqleRule, 
setEquality, 
lambdaEquality, 
because_Cache, 
imageMemberEquality, 
functionEquality, 
dependent_functionElimination, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}a1,a2:A.  \mforall{}f1,f2:a:A  {}\mrightarrow{}  B.    (t-sqle(a:A  {}\mrightarrow{}  B;f1;f2)  {}\mRightarrow{}  t-sqle(A;a1;a2)  {}\mRightarrow{}  t-sqle(B;f1  a1;f2  a2))
Date html generated:
2016_05_13-PM-04_12_54
Last ObjectModification:
2016_01_14-PM-07_28_48
Theory : subtype_1
Home
Index