Nuprl Lemma : t-sqle-base
∀[T:Type]. ∀a,b:T.  (t-sqle(T;a;b) 
⇒ (a ≤ b)) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
t-sqle: t-sqle(T;a;b)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
t-sqle: t-sqle(T;a;b)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
per-class-base, 
t-sqle_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
axiomSqleEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}a,b:T.    (t-sqle(T;a;b)  {}\mRightarrow{}  (a  \mleq{}  b))  supposing  T  \msubseteq{}r  Base
Date html generated:
2016_05_13-PM-04_12_56
Last ObjectModification:
2015_12_26-AM-11_11_34
Theory : subtype_1
Home
Index