Nuprl Lemma : t-sqle-base

[T:Type]. ∀a,b:T.  (t-sqle(T;a;b)  (a ≤ b)) supposing T ⊆Base


Proof




Definitions occuring in Statement :  t-sqle: t-sqle(T;a;b) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q base: Base universe: Type sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q t-sqle: t-sqle(T;a;b) squash: T exists: x:A. B[x] prop:
Lemmas referenced :  per-class-base t-sqle_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination productElimination thin lemma_by_obid isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality sqequalRule axiomSqleEquality lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}a,b:T.    (t-sqle(T;a;b)  {}\mRightarrow{}  (a  \mleq{}  b))  supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_13-PM-04_12_56
Last ObjectModification: 2015_12_26-AM-11_11_34

Theory : subtype_1


Home Index