Nuprl Lemma : trivial-per-class

[T:Type]. ∀[a:T ⋂ Base].  (a ∈ per-class(T;a))


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) isect2: T1 ⋂ T2 uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B per-class: per-class(T;a) prop:
Lemmas referenced :  isect2_subtype_rel base_wf isect2_subtype_rel2 equal-wf-base-T isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule dependent_set_memberEquality equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T  \mcap{}  Base].    (a  \mmember{}  per-class(T;a))



Date html generated: 2016_05_13-PM-04_12_32
Last ObjectModification: 2015_12_26-AM-11_12_16

Theory : subtype_1


Home Index