Nuprl Lemma : trivial-per-class
∀[T:Type]. ∀[a:T ⋂ Base].  (a ∈ per-class(T;a))
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a)
, 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
per-class: per-class(T;a)
, 
prop: ℙ
Lemmas referenced : 
isect2_subtype_rel, 
base_wf, 
isect2_subtype_rel2, 
equal-wf-base-T, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T  \mcap{}  Base].    (a  \mmember{}  per-class(T;a))
Date html generated:
2016_05_13-PM-04_12_32
Last ObjectModification:
2015_12_26-AM-11_12_16
Theory : subtype_1
Home
Index