Nuprl Lemma : union-set-is-set-exists
∀[A,B:Type]. ∀[P:A ⟶ B ⟶ ℙ].  ⋃x:A.{y:B| P[x;y]}  ≡ {y:B| ∃x:A. P[x;y]} 
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
Lemmas referenced : 
exists_wf, 
tunion_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
setEquality, 
applyEquality, 
hypothesis, 
universeEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
because_Cache, 
imageElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_pairFormation, 
imageMemberEquality, 
dependent_pairEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    \mcup{}x:A.\{y:B|  P[x;y]\}    \mequiv{}  \{y:B|  \mexists{}x:A.  P[x;y]\} 
Date html generated:
2016_05_13-PM-04_14_05
Last ObjectModification:
2016_01_14-PM-07_29_03
Theory : subtype_1
Home
Index