Nuprl Lemma : union-set-is-set-exists

[A,B:Type]. ∀[P:A ⟶ B ⟶ ℙ].  ⋃x:A.{y:B| P[x;y]}  ≡ {y:B| ∃x:A. P[x;y]} 


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B tunion: x:A.B[x] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] exists: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s1;s2] prop: so_apply: x[s] exists: x:A. B[x] tunion: x:A.B[x] pi2: snd(t)
Lemmas referenced :  exists_wf tunion_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule setEquality applyEquality hypothesis universeEquality productElimination independent_pairEquality axiomEquality functionEquality cumulativity isect_memberEquality because_Cache imageElimination setElimination rename dependent_set_memberEquality dependent_pairFormation imageMemberEquality dependent_pairEquality baseClosed equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    \mcup{}x:A.\{y:B|  P[x;y]\}    \mequiv{}  \{y:B|  \mexists{}x:A.  P[x;y]\} 



Date html generated: 2016_05_13-PM-04_14_05
Last ObjectModification: 2016_01_14-PM-07_29_03

Theory : subtype_1


Home Index