Nuprl Lemma : implies-mrec-lt

[L:MutualRectypeSpec]. ∀[x:mobj(L)].  ∀y:mobj(L). ((prec_sub(Atom;lbl,p.mrec-spec(L;lbl;p)) y)  x < y)


Proof




Definitions occuring in Statement :  mrec-lt: x < y mobj: mobj(L) mrec-spec: mrec-spec(L;lbl;p) mrec_spec: MutualRectypeSpec prec_sub: prec_sub(P;lbl,p.a[lbl; p]) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q mrec: mrec(L;i) mrec-lt: x < y prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] mobj: mobj(L) subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop:
Lemmas referenced :  mobj-ext prec_sub_wf mrec-spec_wf istype-atom subtype_rel_self mobj_wf subtype_rel_transitivity mkinds_wf mtype_wf prec_wf mrec_spec_wf implies-rel_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination sqequalRule Error :lambdaFormation_alt,  Error :universeIsType,  applyEquality closedConclusion atomEquality Error :lambdaEquality_alt,  hypothesis Error :inhabitedIsType,  productEquality because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[x:mobj(L)].
    \mforall{}y:mobj(L).  ((prec\_sub(Atom;lbl,p.mrec-spec(L;lbl;p))  x  y)  {}\mRightarrow{}  x  <  y)



Date html generated: 2019_06_20-PM-02_15_49
Last ObjectModification: 2019_02_26-AM-11_59_44

Theory : tuples


Home Index