Nuprl Lemma : mrec-ind_wf
∀[L:MutualRectypeSpec]. ∀[A:mobj(L) ⟶ TYPE]. ∀[h:x:mobj(L) ⟶ (z:{z:mobj(L)| z < x}  ⟶ A[z]) ⟶ A[x]]. ∀[o:mobj(L)].
  (mrec-ind(h;o) ∈ A[o])
Proof
Definitions occuring in Statement : 
mrec-ind: mrec-ind(h;o)
, 
mrec-lt: x < y
, 
mobj: mobj(L)
, 
mrec_spec: MutualRectypeSpec
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mrec-ind: mrec-ind(h;o)
, 
mrec-induction, 
mobj-ext, 
prec-induction-ext, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
mrec-induction, 
mobj_wf, 
mrec-lt_wf, 
mrec_spec_wf, 
mobj-ext, 
prec-induction-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
applyEquality, 
Error :lambdaEquality_alt, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
Error :isectIsType, 
Error :functionIsType, 
Error :universeIsType, 
Error :TYPEIsType, 
because_Cache, 
Error :setIsType, 
Error :TYPEMemberIsType, 
setElimination, 
rename, 
axiomEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies
Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[A:mobj(L)  {}\mrightarrow{}  TYPE].  \mforall{}[h:x:mobj(L)  {}\mrightarrow{}  (z:\{z:mobj(L)|  z  <  x\}    {}\mrightarrow{}  A[z])  {}\mrightarrow{}  A[\000Cx]].
\mforall{}[o:mobj(L)].
    (mrec-ind(h;o)  \mmember{}  A[o])
Date html generated:
2019_06_20-PM-02_16_27
Last ObjectModification:
2019_03_12-PM-11_33_36
Theory : tuples
Home
Index