Nuprl Lemma : mrec-ind_wf

[L:MutualRectypeSpec]. ∀[A:mobj(L) ⟶ TYPE]. ∀[h:x:mobj(L) ⟶ (z:{z:mobj(L)| z < x}  ⟶ A[z]) ⟶ A[x]]. ∀[o:mobj(L)].
  (mrec-ind(h;o) ∈ A[o])


Proof




Definitions occuring in Statement :  mrec-ind: mrec-ind(h;o) mrec-lt: x < y mobj: mobj(L) mrec_spec: MutualRectypeSpec uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mrec-ind: mrec-ind(h;o) mrec-induction mobj-ext prec-induction-ext implies:  Q all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  mrec-induction mobj_wf mrec-lt_wf mrec_spec_wf mobj-ext prec-induction-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution thin instantiate extract_by_obid hypothesis applyEquality Error :lambdaEquality_alt,  isectElimination hypothesisEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :isectIsType,  Error :functionIsType,  Error :universeIsType,  Error :TYPEIsType,  because_Cache Error :setIsType,  Error :TYPEMemberIsType,  setElimination rename axiomEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[A:mobj(L)  {}\mrightarrow{}  TYPE].  \mforall{}[h:x:mobj(L)  {}\mrightarrow{}  (z:\{z:mobj(L)|  z  <  x\}    {}\mrightarrow{}  A[z])  {}\mrightarrow{}  A[\000Cx]].
\mforall{}[o:mobj(L)].
    (mrec-ind(h;o)  \mmember{}  A[o])



Date html generated: 2019_06_20-PM-02_16_27
Last ObjectModification: 2019_03_12-PM-11_33_36

Theory : tuples


Home Index