Nuprl Lemma : n-tuple_wf
∀[n:ℕ]. (n-tuple(n) ∈ Type)
Proof
Definitions occuring in Statement : 
n-tuple: n-tuple(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
n-tuple: n-tuple(n)
, 
nat: ℕ
Lemmas referenced : 
tuple-type_wf, 
map_wf, 
int_seg_wf, 
top_wf, 
upto_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
cumulativity, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (n-tuple(n)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_57_21
Last ObjectModification:
2015_12_26-PM-07_22_18
Theory : tuples
Home
Index