Nuprl Lemma : n-tuple_wf
∀[n:ℕ]. (n-tuple(n) ∈ Type)
Proof
Definitions occuring in Statement :
n-tuple: n-tuple(n)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
n-tuple: n-tuple(n)
,
nat: ℕ
Lemmas referenced :
tuple-type_wf,
map_wf,
int_seg_wf,
top_wf,
upto_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
instantiate,
cumulativity,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
universeEquality,
lambdaEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}]. (n-tuple(n) \mmember{} Type)
Date html generated:
2016_05_14-PM-03_57_21
Last ObjectModification:
2015_12_26-PM-07_22_18
Theory : tuples
Home
Index