Nuprl Lemma : product_well_fnd

[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].
  (WellFnd{i}(A;a1,a2.Ra[a1;a2])
   WellFnd{i}(B;b1,b2.Rb[b1;b2])
   WellFnd{i}(A × B;p1,p2.let a1,b1 p1 
                            in let a2,b2 p2 
                               in Ra[a1;a2] ∨ ((a1 a2 ∈ A) ∧ Rb[b1;b2])))


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q wellfounded: WellFnd{i}(A;x,y.R[x; y]) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q so_apply: x[s] all: x:A. B[x] so_lambda: λ2y.t[x; y]
Lemmas referenced :  all_wf or_wf equal_wf wellfounded_wf
Rules used in proof :  hyp_replacement applyLambdaEquality unionElimination dependent_functionElimination spreadEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin productEquality cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality because_Cache productElimination applyEquality functionExtensionality hypothesis independent_pairEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(A;a1,a2.Ra[a1;a2])
    {}\mRightarrow{}  WellFnd\{i\}(B;b1,b2.Rb[b1;b2])
    {}\mRightarrow{}  WellFnd\{i\}(A  \mtimes{}  B;p1,p2.let  a1,b1  =  p1 
                                                        in  let  a2,b2  =  p2 
                                                              in  Ra[a1;a2]  \mvee{}  ((a1  =  a2)  \mwedge{}  Rb[b1;b2])))



Date html generated: 2019_06_20-PM-01_04_20
Last ObjectModification: 2019_06_20-PM-01_01_50

Theory : well_fnd


Home Index