Nuprl Lemma : product_well_fnd
∀[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].
  (WellFnd{i}(A;a1,a2.Ra[a1;a2])
  
⇒ WellFnd{i}(B;b1,b2.Rb[b1;b2])
  
⇒ WellFnd{i}(A × B;p1,p2.let a1,b1 = p1 
                            in let a2,b2 = p2 
                               in Ra[a1;a2] ∨ ((a1 = a2 ∈ A) ∧ Rb[b1;b2])))
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
all_wf, 
or_wf, 
equal_wf, 
wellfounded_wf
Rules used in proof : 
hyp_replacement, 
applyLambdaEquality, 
unionElimination, 
dependent_functionElimination, 
spreadEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
productElimination, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_pairEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(A;a1,a2.Ra[a1;a2])
    {}\mRightarrow{}  WellFnd\{i\}(B;b1,b2.Rb[b1;b2])
    {}\mRightarrow{}  WellFnd\{i\}(A  \mtimes{}  B;p1,p2.let  a1,b1  =  p1 
                                                        in  let  a2,b2  =  p2 
                                                              in  Ra[a1;a2]  \mvee{}  ((a1  =  a2)  \mwedge{}  Rb[b1;b2])))
Date html generated:
2019_06_20-PM-01_04_20
Last ObjectModification:
2019_06_20-PM-01_01_50
Theory : well_fnd
Home
Index