Nuprl Lemma : b_all-inst
∀[B:Type]. ∀b:bag(B). ∀P:B ⟶ ℙ. ∀x:B.  (x ↓∈ b 
⇒ b_all(B;b;x.P[x]) 
⇒ P[x])
Proof
Definitions occuring in Statement : 
b_all: b_all(T;b;x.P[x])
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
b_all: b_all(T;b;x.P[x])
Lemmas referenced : 
b_all_wf, 
bag-member_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[B:Type].  \mforall{}b:bag(B).  \mforall{}P:B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x:B.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  b\_all(B;b;x.P[x])  {}\mRightarrow{}  P[x])
Date html generated:
2016_05_15-PM-02_41_26
Last ObjectModification:
2015_12_27-AM-09_40_46
Theory : bags
Home
Index