Nuprl Lemma : b_all-inst

[B:Type]. ∀b:bag(B). ∀P:B ⟶ ℙ. ∀x:B.  (x ↓∈  b_all(B;b;x.P[x])  P[x])


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} b_all: b_all(T;b;x.P[x])
Lemmas referenced :  b_all_wf bag-member_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[B:Type].  \mforall{}b:bag(B).  \mforall{}P:B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x:B.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  b\_all(B;b;x.P[x])  {}\mRightarrow{}  P[x])



Date html generated: 2016_05_15-PM-02_41_26
Last ObjectModification: 2015_12_27-AM-09_40_46

Theory : bags


Home Index