Nuprl Lemma : b_all_wf
∀[T:Type]. ∀[b:bag(T)]. ∀[P:T ⟶ ℙ]. (b_all(T;b;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement :
b_all: b_all(T;b;x.P[x])
,
bag: bag(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
b_all: b_all(T;b;x.P[x])
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
all_wf,
bag-member_wf,
bag_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
functionEquality,
hypothesis,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
cumulativity,
universeEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[b:bag(T)]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. (b\_all(T;b;x.P[x]) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-02_41_10
Last ObjectModification:
2015_12_27-AM-09_40_55
Theory : bags
Home
Index