Nuprl Lemma : b_all_wf

[T:Type]. ∀[b:bag(T)]. ∀[P:T ⟶ ℙ].  (b_all(T;b;x.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) bag: bag(T) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T b_all: b_all(T;b;x.P[x]) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf bag-member_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (b\_all(T;b;x.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_41_10
Last ObjectModification: 2015_12_27-AM-09_40_55

Theory : bags


Home Index