Nuprl Lemma : bag-bind_wf
∀[A,B:Type]. ∀[bs:bag(A)]. ∀[f:A ⟶ bag(B)].  (bag-bind(bs;f) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-bind: bag-bind(bs;f)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-bind: bag-bind(bs;f)
Lemmas referenced : 
bag-union_wf, 
bag-map_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].    (bag-bind(bs;f)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-03_12_45
Last ObjectModification:
2015_12_27-AM-09_23_17
Theory : bags
Home
Index