Nuprl Lemma : bag-filter-union2
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bbs:bag(bag(T))].  ([x∈bag-union(bbs)|p[x]] = bag-union(bag-map(λb.[x∈b|p[x]];bbs)) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bag-filter-union, 
subtype_rel_bag, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bbs:bag(bag(T))].
    ([x\mmember{}bag-union(bbs)|p[x]]  =  bag-union(bag-map(\mlambda{}b.[x\mmember{}b|p[x]];bbs)))
Date html generated:
2016_05_15-PM-02_27_10
Last ObjectModification:
2015_12_27-AM-09_51_33
Theory : bags
Home
Index