Nuprl Lemma : bag-filter-union2

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bbs:bag(bag(T))].  ([x∈bag-union(bbs)|p[x]] bag-union(bag-map(λb.[x∈b|p[x]];bbs)) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter-union subtype_rel_bag assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule hypothesisEquality hypothesis applyEquality setEquality independent_isectElimination lambdaEquality setElimination rename isect_memberEquality axiomEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bbs:bag(bag(T))].
    ([x\mmember{}bag-union(bbs)|p[x]]  =  bag-union(bag-map(\mlambda{}b.[x\mmember{}b|p[x]];bbs)))



Date html generated: 2016_05_15-PM-02_27_10
Last ObjectModification: 2015_12_27-AM-09_51_33

Theory : bags


Home Index