Nuprl Lemma : bag-max-lb

[A:Type]. ∀[f:A ⟶ ℤ]. ∀[bs:bag(A)].  bag-max(f;bs) ↓∈ bag-map(f;bs) supposing 0 < #(bs)


Proof




Definitions occuring in Statement :  bag-max: bag-max(f;bs) bag-member: x ↓∈ bs bag-size: #(bs) bag-map: bag-map(f;bs) bag: bag(T) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-max: bag-max(f;bs) implies:  Q top: Top bag-member: x ↓∈ bs squash: T prop: subtype_rel: A ⊆B nat:
Lemmas referenced :  bag_wf nat_wf bag-size_wf less_than_wf bag-size-map bag-map_wf imax-bag-lb
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality voidElimination voidEquality imageElimination imageMemberEquality baseClosed natural_numberEquality applyEquality lambdaEquality setElimination rename because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[bs:bag(A)].    bag-max(f;bs)  \mdownarrow{}\mmember{}  bag-map(f;bs)  supposing  0  <  \#(bs)



Date html generated: 2016_05_15-PM-02_51_18
Last ObjectModification: 2016_01_16-AM-08_41_48

Theory : bags


Home Index