Nuprl Lemma : bag-maximal?-single
∀[T:Type]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[v,x:T].  uiff(↑bag-maximal?({v};x;R);↑(R x v))
Proof
Definitions occuring in Statement : 
bag-maximal?: bag-maximal?(bg;x;R)
, 
single-bag: {x}
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
single-bag: {x}
, 
bag-maximal?: bag-maximal?(bg;x;R)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
assert_witness, 
assert_wf, 
bag-maximal?_wf, 
single-bag_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
universeEquality, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[v,x:T].    uiff(\muparrow{}bag-maximal?(\{v\};x;R);\muparrow{}(R  x  v))
Date html generated:
2016_05_15-PM-02_30_29
Last ObjectModification:
2015_12_27-AM-09_48_51
Theory : bags
Home
Index