Nuprl Lemma : bag-maximal?_wf
∀[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x:T].  (bag-maximal?(b;x;R) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bag-maximal?: bag-maximal?(bg;x;R)
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-maximal?: bag-maximal?(bg;x;R)
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag-accum_wf, 
bool_wf, 
btrue_wf, 
eqtt_to_assert, 
equal_wf, 
iff_imp_equal_bool, 
band_wf, 
assert_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
iff_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
addLevel, 
impliesFunctionality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].    (bag-maximal?(b;x;R)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_48_24
Last ObjectModification:
2017_07_26-PM-04_32_33
Theory : bags
Home
Index