Nuprl Lemma : bag-maximal?_wf

[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x:T].  (bag-maximal?(b;x;R) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bag-maximal?: bag-maximal?(bg;x;R) bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-maximal?: bag-maximal?(bg;x;R) so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_apply: x[s1;s2] bfalse: ff prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag-accum_wf bool_wf btrue_wf eqtt_to_assert equal_wf iff_imp_equal_bool band_wf assert_wf iff_transitivity iff_weakening_uiff assert_of_band iff_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination applyEquality functionExtensionality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation productEquality addLevel impliesFunctionality axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].    (bag-maximal?(b;x;R)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_48_24
Last ObjectModification: 2017_07_26-PM-04_32_33

Theory : bags


Home Index