Nuprl Lemma : bagp_wf

[T:Type]. (T Bag+ ∈ Type)


Proof




Definitions occuring in Statement :  bagp: Bag+ uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bagp: Bag+ subtype_rel: A ⊆B nat: prop:
Lemmas referenced :  bag_wf less_than_wf bag-size_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (T  Bag\msupplus{}  \mmember{}  Type)



Date html generated: 2016_05_15-PM-02_26_23
Last ObjectModification: 2015_12_27-AM-09_52_14

Theory : bags


Home Index