Nuprl Lemma : concat-lifting-1_wf

[B,A:Type]. ∀[f:A ⟶ bag(B)].  (f@ ∈ bag(A) ⟶ bag(B))


Proof




Definitions occuring in Statement :  concat-lifting-1: f@ bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concat-lifting-1: f@
Lemmas referenced :  concat-lifting1_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].    (f@  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B))



Date html generated: 2016_05_15-PM-03_07_53
Last ObjectModification: 2015_12_27-AM-09_26_43

Theory : bags


Home Index