Nuprl Lemma : concat-lifting1_wf
∀[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[b:bag(A)].  (concat-lifting1(f;b) ∈ bag(B))
Proof
Definitions occuring in Statement : 
concat-lifting1: concat-lifting1(f;bag)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
concat-lifting1: concat-lifting1(f;bag)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
funtype: funtype(n;A;T)
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
concat-lifting_wf, 
false_wf, 
le_wf, 
int_seg_wf, 
primrec1_lemma, 
subtype_rel_self, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
axiomEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:bag(A)].    (concat-lifting1(f;b)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-03_07_14
Last ObjectModification:
2015_12_27-AM-09_26_49
Theory : bags
Home
Index