Nuprl Lemma : concat-lifting-2_wf
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ bag(C)].  (f@ ∈ bag(A) ⟶ bag(B) ⟶ bag(C))
Proof
Definitions occuring in Statement : 
concat-lifting-2: f@
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
concat-lifting-2: f@
Lemmas referenced : 
concat-lifting2_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].    (f@  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C))
Date html generated:
2016_05_15-PM-03_08_09
Last ObjectModification:
2015_12_27-AM-09_26_37
Theory : bags
Home
Index