Nuprl Lemma : concat-lifting-2_wf

[A,B,C:Type]. ∀[f:A ⟶ B ⟶ bag(C)].  (f@ ∈ bag(A) ⟶ bag(B) ⟶ bag(C))


Proof




Definitions occuring in Statement :  concat-lifting-2: f@ bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concat-lifting-2: f@
Lemmas referenced :  concat-lifting2_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].    (f@  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C))



Date html generated: 2016_05_15-PM-03_08_09
Last ObjectModification: 2015_12_27-AM-09_26_37

Theory : bags


Home Index