Nuprl Lemma : concat-lifting2_wf
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ bag(C)]. ∀[abag:bag(A)]. ∀[bbag:bag(B)].  (concat-lifting2(f;abag;bbag) ∈ bag(C))
Proof
Definitions occuring in Statement : 
concat-lifting2: concat-lifting2(f;abag;bbag)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
concat-lifting2: concat-lifting2(f;abag;bbag)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
funtype: funtype(n;A;T)
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
bag_wf, 
primrec1_lemma, 
primrec-unroll, 
int_seg_cases, 
int_seg_subtype, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
int_seg_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
length_of_nil_lemma, 
length_of_cons_lemma, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
nil_wf, 
cons_wf, 
select_wf, 
le_wf, 
false_wf, 
concat-lifting_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
lambdaEquality, 
instantiate, 
universeEquality, 
because_Cache, 
cumulativity, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis_subsumption, 
introduction, 
functionEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].  \mforall{}[abag:bag(A)].  \mforall{}[bbag:bag(B)].
    (concat-lifting2(f;abag;bbag)  \mmember{}  bag(C))
Date html generated:
2016_05_15-PM-03_07_26
Last ObjectModification:
2016_01_16-AM-08_34_58
Theory : bags
Home
Index