Nuprl Lemma : concat-lifting2_wf

[A,B,C:Type]. ∀[f:A ⟶ B ⟶ bag(C)]. ∀[abag:bag(A)]. ∀[bbag:bag(B)].  (concat-lifting2(f;abag;bbag) ∈ bag(C))


Proof




Definitions occuring in Statement :  concat-lifting2: concat-lifting2(f;abag;bbag) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  concat-lifting2: concat-lifting2(f;abag;bbag) uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) select: L[n] cons: [a b] subtract: m funtype: funtype(n;A;T) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  bag_wf primrec1_lemma primrec-unroll int_seg_cases int_seg_subtype int_subtype_base subtype_base_sq decidable__equal_int int_seg_wf int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt length_of_nil_lemma length_of_cons_lemma int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties nil_wf cons_wf select_wf le_wf false_wf concat-lifting_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis lambdaEquality instantiate universeEquality because_Cache cumulativity setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality independent_functionElimination equalityTransitivity equalitySymmetry hypothesis_subsumption introduction functionEquality isect_memberFormation axiomEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].  \mforall{}[abag:bag(A)].  \mforall{}[bbag:bag(B)].
    (concat-lifting2(f;abag;bbag)  \mmember{}  bag(C))



Date html generated: 2016_05_15-PM-03_07_26
Last ObjectModification: 2016_01_16-AM-08_34_58

Theory : bags


Home Index