Nuprl Lemma : concat-lifting-gen_wf
∀[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[f:funtype(n;A;bag(B))].  (concat-lifting-gen(n;f) ∈ (k:ℕn ⟶ bag(A k)) ⟶ bag(B))
Proof
Definitions occuring in Statement : 
concat-lifting-gen: concat-lifting-gen(n;f)
, 
bag: bag(T)
, 
funtype: funtype(n;A;T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
concat-lifting-gen: concat-lifting-gen(n;f)
, 
nat: ℕ
Lemmas referenced : 
concat-lifting_wf, 
int_seg_wf, 
bag_wf, 
funtype_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n;A;bag(B))].
    (concat-lifting-gen(n;f)  \mmember{}  (k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k))  {}\mrightarrow{}  bag(B))
Date html generated:
2016_05_15-PM-03_07_01
Last ObjectModification:
2015_12_27-AM-09_27_02
Theory : bags
Home
Index