Nuprl Lemma : mk_bag_wf

[T:Type]. ∀[L:T List].  (mk_bag(L) ∈ bag(T))


Proof




Definitions occuring in Statement :  mk_bag: mk_bag(L) bag: bag(T) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk_bag: mk_bag(L) subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  list-subtype-bag list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (mk\_bag(L)  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_21_40
Last ObjectModification: 2015_12_27-AM-09_55_24

Theory : bags


Home Index