Nuprl Lemma : mk_bag_wf
∀[T:Type]. ∀[L:T List].  (mk_bag(L) ∈ bag(T))
Proof
Definitions occuring in Statement : 
mk_bag: mk_bag(L)
, 
bag: bag(T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk_bag: mk_bag(L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
list-subtype-bag, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (mk\_bag(L)  \mmember{}  bag(T))
Date html generated:
2016_05_15-PM-02_21_40
Last ObjectModification:
2015_12_27-AM-09_55_24
Theory : bags
Home
Index