Nuprl Lemma : sub-bag-append-trivial2

[T:Type]. ∀[b,y:bag(T)].  ∀x:bag(T). (sub-bag(T;b;y)  sub-bag(T;b;x y))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-append: as bs bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] member: t ∈ T prop:
Lemmas referenced :  bag-append_wf bag-append-assoc-comm equal_wf bag_wf sub-bag_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis hyp_replacement equalitySymmetry applyLambdaEquality equalityIstype because_Cache universeIsType inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b,y:bag(T)].    \mforall{}x:bag(T).  (sub-bag(T;b;y)  {}\mRightarrow{}  sub-bag(T;b;x  +  y))



Date html generated: 2019_10_15-AM-11_01_07
Last ObjectModification: 2018_11_30-AM-10_07_34

Theory : bags


Home Index