Nuprl Lemma : bag-remove-append

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)]. ∀[x:T].  (as bs as bs x)


Proof




Definitions occuring in Statement :  bag-remove: bs x bag-append: as bs bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-remove: bs x so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  bag-filter-append bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom hypothesisEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].  \mforall{}[x:T].    (as  +  bs  -  x  \msim{}  as  -  x  +  bs  -  x)



Date html generated: 2016_05_15-PM-08_03_19
Last ObjectModification: 2015_12_27-PM-04_15_13

Theory : bags_2


Home Index