Step
*
2
1
2
1
of Lemma
equipollent-choose
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : {1...}
4. m ≤ n
5. m = n ∈ ℤ
6. x : bag(ℕn)
7. bag-no-repeats(ℕn;x)
8. #(x) = n ∈ ℤ
⊢ x = upto(n) ∈ bag(ℕn)
BY
{ (D -2
THEN ExRepD
THEN (RevHypSubst (-3) 0 THEN Auto)
THEN ((RevHypSubst (-3) (-1) THEN Auto)
THEN ((EqTypeCD THEN Auto)
THEN Unfold `bag-size` (-1)
THEN BLemma `permutation-when-no_repeats` ⋅
THEN Auto
THEN Try ((BLemma `member_upto2` THEN Auto))
THEN Thin (-1)
THEN SupposeNot)⋅
)⋅) }
1
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : {1...}
4. m ≤ n
5. m = n ∈ ℤ
6. x : bag(ℕn)
7. L : ℕn List
8. L = x ∈ bag(ℕn)
9. no_repeats(ℕn;L)
10. ||L|| = n ∈ ℤ
11. x1 : ℕn
12. ¬(x1 ∈ L)
⊢ (x1 ∈ L)
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}n:\mBbbN{}n. \mforall{}m:\mBbbN{}. ((m \mleq{} n) {}\mRightarrow{} UnorderedCombination(m;\mBbbN{}n) \msim{} \mBbbN{}choose(n;m))
3. m : \{1...\}
4. m \mleq{} n
5. m = n
6. x : bag(\mBbbN{}n)
7. bag-no-repeats(\mBbbN{}n;x)
8. \#(x) = n
\mvdash{} x = upto(n)
By
Latex:
(D -2
THEN ExRepD
THEN (RevHypSubst (-3) 0 THEN Auto)
THEN ((RevHypSubst (-3) (-1) THEN Auto)
THEN ((EqTypeCD THEN Auto)
THEN Unfold `bag-size` (-1)
THEN BLemma `permutation-when-no\_repeats` \mcdot{}
THEN Auto
THEN Try ((BLemma `member\_upto2` THEN Auto))
THEN Thin (-1)
THEN SupposeNot)\mcdot{}
)\mcdot{})
Home
Index