Nuprl Lemma : wfd-tree-induction-ext

[A:Type]. ∀[P:wfd-tree(A) ⟶ ℙ].
  (P[w-nil()]  (∀f:A ⟶ wfd-tree(A). ((∀a:A. P[f a])  P[mk-wfd-tree(f)]))  (∀w:wfd-tree(A). P[w]))


Proof




Definitions occuring in Statement :  mk-wfd-tree: mk-wfd-tree(f) w-nil: w-nil() wfd-tree2: wfd-tree(A) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T so_lambda: λ2x.t[x] wfd-tree-induction bool-bar-induction list_induction
Lemmas referenced :  wfd-tree-induction bool-bar-induction list_induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  \mforall{}[P:wfd-tree(A)  {}\mrightarrow{}  \mBbbP{}].
    (P[w-nil()]
    {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  wfd-tree(A).  ((\mforall{}a:A.  P[f  a])  {}\mRightarrow{}  P[mk-wfd-tree(f)]))
    {}\mRightarrow{}  (\mforall{}w:wfd-tree(A).  P[w]))



Date html generated: 2018_05_21-PM-10_18_22
Last ObjectModification: 2018_05_19-PM-04_13_07

Theory : bar!induction


Home Index