Nuprl Lemma : bool-bar-induction

[T:Type]. ∀[A:(T List) ⟶ ℙ].
  ∀R:(T List) ⟶ 𝔹
    ((∀s:{s:T List| ↑R[s]} A[s])
     (∀s:{s:T List| ¬↑R[s]} ((∀t:T. A[s [t]])  A[s]))
     (∀alpha:ℕ ⟶ T. (↓∃n:ℕ(↑R[map(alpha;upto(n))])))
     A[[]])


Proof




Definitions occuring in Statement :  upto: upto(n) map: map(f;as) append: as bs cons: [a b] nil: [] list: List nat: assert: b bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] squash: T prop: nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  bool_wf cons_wf append_wf not_wf list_wf upto_wf false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_wf assert_wf exists_wf squash_wf all_wf nat_wf list_ind_nil_lemma nil_wf bbar-recursion_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination imageMemberEquality baseClosed functionEquality cumulativity natural_numberEquality setElimination independent_isectElimination independent_pairFormation setEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}R:(T  List)  {}\mrightarrow{}  \mBbbB{}
        ((\mforall{}s:\{s:T  List|  \muparrow{}R[s]\}  .  A[s])
        {}\mRightarrow{}  (\mforall{}s:\{s:T  List|  \mneg{}\muparrow{}R[s]\}  .  ((\mforall{}t:T.  A[s  @  [t]])  {}\mRightarrow{}  A[s]))
        {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (\muparrow{}R[map(alpha;upto(n))])))
        {}\mRightarrow{}  A[[]])



Date html generated: 2016_05_15-PM-10_05_13
Last ObjectModification: 2016_01_16-PM-04_05_39

Theory : bar!induction


Home Index