Nuprl Lemma : bbar-recursion_wf

[T:Type]. ∀[R:(T List) ⟶ 𝔹]. ∀[A:(T List) ⟶ ℙ]. ∀[b:∀s:{s:T List| ↑R[s]} A[s]]. ∀[i:∀s:{s:T List| ¬↑R[s]} 
                                                                                          ((∀t:T. A[s [t]])  A[s])].
[s:T List].
  ((∀alpha:ℕ ⟶ T. (↓∃n:ℕ(↑R[s map(alpha;upto(n))])))  (bbar-recursion(R;b;i;s) ∈ A[s]))


Proof




Definitions occuring in Statement :  bbar-recursion: bbar-recursion upto: upto(n) map: map(f;as) append: as bs cons: [a b] nil: [] list: List nat: assert: b bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] exists: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q guard: {T} bbar-recursion: bbar-recursion bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf assert_wf list_wf append_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf upto_wf not_wf cons_wf nil_wf bool_wf subtype_rel_list top_wf append-nil decidable__assert eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot append_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin functionEquality cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality functionExtensionality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality setEquality universeEquality voidElimination voidEquality barInduction unionElimination inlFormation inrFormation equalityElimination productElimination dependent_set_memberEquality dependent_pairFormation promote_hyp instantiate independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:\mforall{}s:\{s:T  List|  \muparrow{}R[s]\}  .  A[s]].
\mforall{}[i:\mforall{}s:\{s:T  List|  \mneg{}\muparrow{}R[s]\}  .  ((\mforall{}t:T.  A[s  @  [t]])  {}\mRightarrow{}  A[s])].  \mforall{}[s:T  List].
    ((\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (\muparrow{}R[s  @  map(alpha;upto(n))])))  {}\mRightarrow{}  (bbar-recursion(R;b;i;s)  \mmember{}  A[s]))



Date html generated: 2018_05_21-PM-10_17_40
Last ObjectModification: 2017_07_26-PM-06_36_26

Theory : bar!induction


Home Index