Nuprl Lemma : wfd-tree-induction

[A:Type]. ∀[P:wfd-tree(A) ⟶ ℙ].
  (P[w-nil()]  (∀f:A ⟶ wfd-tree(A). ((∀a:A. P[f a])  P[mk-wfd-tree(f)]))  (∀w:wfd-tree(A). P[w]))


Proof




Definitions occuring in Statement :  mk-wfd-tree: mk-wfd-tree(f) w-nil: w-nil() wfd-tree2: wfd-tree(A) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] wfd-tree2: wfd-tree(A) squash: T or: P ∨ Q subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A false: False append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] co-w-select: w@s btrue: tt bor: p ∨bq ifthenelse: if then else fi  assert: b co-w-null: co-w-null(w) isl: isl(x) w-nil: w-nil() bfalse: ff wfd-subtrees: wfd-subtrees(w) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb w-bars: w-bars(w;p)
Lemmas referenced :  wfd-tree2_wf all_wf mk-wfd-tree_wf w-nil_wf bool-bar-induction co-w-select-wfd list_wf co-w-null_wf co-w-select_wf set_wf assert_wf append_wf cons_wf nil_wf not_wf nat_wf wfd-tree-cases subtype_rel-equal equal_wf squash_wf true_wf iff_weakening_equal assert_elim not_assert_elim btrue_neq_bfalse list_induction isect_wf list_ind_nil_lemma null_nil_lemma reduce_tl_nil_lemma co_w_select_nil_lemma wfd-subtrees_wf null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert-co-w-null equal-wf-T-base co-w_wf iff_imp_equal_bool bfalse_wf false_wf assert_of_ff list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis functionEquality sqequalRule lambdaEquality applyEquality functionExtensionality universeEquality because_Cache dependent_functionElimination setElimination rename independent_functionElimination imageElimination imageMemberEquality baseClosed unionElimination independent_isectElimination instantiate equalityTransitivity equalitySymmetry natural_numberEquality productElimination addLevel voidElimination levelHypothesis isect_memberEquality voidEquality hyp_replacement applyLambdaEquality equalityElimination dependent_pairFormation promote_hyp independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[P:wfd-tree(A)  {}\mrightarrow{}  \mBbbP{}].
    (P[w-nil()]
    {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  wfd-tree(A).  ((\mforall{}a:A.  P[f  a])  {}\mRightarrow{}  P[mk-wfd-tree(f)]))
    {}\mRightarrow{}  (\mforall{}w:wfd-tree(A).  P[w]))



Date html generated: 2018_05_21-PM-10_18_20
Last ObjectModification: 2017_07_26-PM-06_36_36

Theory : bar!induction


Home Index