Nuprl Lemma : assert-co-w-null

[A:Type]. ∀[w:co-w(A)].  uiff(↑co-w-null(w);w w-nil() ∈ co-w(A))


Proof




Definitions occuring in Statement :  w-nil: w-nil() co-w-null: co-w-null(w) co-w: co-w(A) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B wfd-tree2: wfd-tree(A) prop: assert: b ifthenelse: if then else fi  co-w-null: co-w-null(w) isl: isl(x) w-nil: w-nil() btrue: tt true: True implies:  Q guard: {T} all: x:A. B[x] bfalse: ff false: False unit: Unit it:
Lemmas referenced :  wfd-tree2_wf assert_wf co-w-null_wf assert_witness equal-wf-T-base co-w_wf co-w-ext subtype_rel_weakening unit_wf2 equal_wf true_wf false_wf w-nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation applyEquality lambdaEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality extract_by_obid isectElimination cumulativity hypothesis sqequalRule natural_numberEquality hyp_replacement equalitySymmetry applyLambdaEquality independent_functionElimination baseClosed productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity universeEquality unionEquality functionEquality independent_isectElimination lambdaFormation dependent_functionElimination unionElimination voidElimination equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[w:co-w(A)].    uiff(\muparrow{}co-w-null(w);w  =  w-nil())



Date html generated: 2018_05_21-PM-10_17_58
Last ObjectModification: 2017_07_26-PM-06_36_30

Theory : bar!induction


Home Index