Nuprl Lemma : apply-bar

[A:Type]. ∀[B:A ⟶ Type]. ∀[f:partial(a:A ⟶ B[a])]. ∀[a:A].  a ∈ partial(B[a]) supposing value-type(B[a])


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  apply-partial value-type_wf partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality applyEquality hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:partial(a:A  {}\mrightarrow{}  B[a])].  \mforall{}[a:A].
    f  a  \mmember{}  partial(B[a])  supposing  value-type(B[a])



Date html generated: 2016_05_15-PM-10_04_39
Last ObjectModification: 2015_12_27-PM-05_16_47

Theory : bar!type


Home Index