Nuprl Lemma : no-value-bottom

[T:Type]. ∀[x:partial(T)]. ~ ⊥ supposing ¬(x)↓ supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  no-value-bottom not_wf has-value_wf-partial partial_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalAxiom sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].  x  \msim{}  \mbot{}  supposing  \mneg{}(x)\mdownarrow{}  supposing  value-type(T)



Date html generated: 2016_05_15-PM-10_04_09
Last ObjectModification: 2015_12_27-PM-05_16_59

Theory : bar!type


Home Index