Nuprl Lemma : no-value-bottom
∀[T:Type]. ∀[x:partial(T)]. x ~ ⊥ supposing ¬(x)↓ supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
no-value-bottom, 
not_wf, 
has-value_wf-partial, 
partial_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].  x  \msim{}  \mbot{}  supposing  \mneg{}(x)\mdownarrow{}  supposing  value-type(T)
Date html generated:
2016_05_15-PM-10_04_09
Last ObjectModification:
2015_12_27-PM-05_16_59
Theory : bar!type
Home
Index