Nuprl Lemma : subtype_bar
∀[A:Type]. A ⊆r bar(A) supposing value-type(A)
Proof
Definitions occuring in Statement :
bar: bar(T)
,
value-type: value-type(T)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
bar: bar(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
Lemmas referenced :
value-type_wf,
inclusion-partial
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
hypothesis,
axiomEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[A:Type]. A \msubseteq{}r bar(A) supposing value-type(A)
Date html generated:
2016_05_15-PM-10_03_38
Last ObjectModification:
2016_01_05-PM-06_24_35
Theory : bar!type
Home
Index