Nuprl Lemma : subtype_bar
∀[A:Type]. A ⊆r bar(A) supposing value-type(A)
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
value-type_wf, 
inclusion-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  A  \msubseteq{}r  bar(A)  supposing  value-type(A)
Date html generated:
2016_05_15-PM-10_03_38
Last ObjectModification:
2016_01_05-PM-06_24_35
Theory : bar!type
Home
Index