Nuprl Lemma : subtype_bar

[A:Type]. A ⊆bar(A) supposing value-type(A)


Proof




Definitions occuring in Statement :  bar: bar(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  bar: bar(T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  value-type_wf inclusion-partial
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  A  \msubseteq{}r  bar(A)  supposing  value-type(A)



Date html generated: 2016_05_15-PM-10_03_38
Last ObjectModification: 2016_01_05-PM-06_24_35

Theory : bar!type


Home Index