Nuprl Lemma : subtype_bar2

[A,B:Type].  bar(A) ⊆bar(B) supposing (A ⊆B) ∧ (value-type(A) ∨ (A ⊆Base)) ∧ (value-type(B) ∨ (B ⊆Base))


Proof




Definitions occuring in Statement :  bar: bar(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] or: P ∨ Q and: P ∧ Q base: Base universe: Type
Definitions unfolded in proof :  bar: bar(T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B prop:
Lemmas referenced :  base_wf value-type_wf or_wf subtype_rel_wf and_wf subtype_rel_partial
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].
    bar(A)  \msubseteq{}r  bar(B) 
    supposing  (A  \msubseteq{}r  B)  \mwedge{}  (value-type(A)  \mvee{}  (A  \msubseteq{}r  Base))  \mwedge{}  (value-type(B)  \mvee{}  (B  \msubseteq{}r  Base))



Date html generated: 2016_05_15-PM-10_03_46
Last ObjectModification: 2016_01_05-PM-06_26_46

Theory : bar!type


Home Index