Nuprl Lemma : subtype_bar2
∀[A,B:Type].  bar(A) ⊆r bar(B) supposing (A ⊆r B) ∧ (value-type(A) ∨ (A ⊆r Base)) ∧ (value-type(B) ∨ (B ⊆r Base))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
value-type_wf, 
or_wf, 
subtype_rel_wf, 
and_wf, 
subtype_rel_partial
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    bar(A)  \msubseteq{}r  bar(B) 
    supposing  (A  \msubseteq{}r  B)  \mwedge{}  (value-type(A)  \mvee{}  (A  \msubseteq{}r  Base))  \mwedge{}  (value-type(B)  \mvee{}  (B  \msubseteq{}r  Base))
Date html generated:
2016_05_15-PM-10_03_46
Last ObjectModification:
2016_01_05-PM-06_26_46
Theory : bar!type
Home
Index