Nuprl Lemma : bool_decision

[x:𝔹]. (x ∈ Decision)


Proof




Definitions occuring in Statement :  decision: Decision bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  decision: Decision bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  subtype_rel_union unit_wf2 top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry unionEquality

Latex:
\mforall{}[x:\mBbbB{}].  (x  \mmember{}  Decision)



Date html generated: 2019_10_15-AM-10_46_54
Last ObjectModification: 2018_09_17-PM-06_45_59

Theory : basic


Home Index