Nuprl Lemma : bool_decision
∀[x:𝔹]. (x ∈ Decision)
Proof
Definitions occuring in Statement : 
decision: Decision
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
decision: Decision
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
subtype_rel_union, 
unit_wf2, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality
Latex:
\mforall{}[x:\mBbbB{}].  (x  \mmember{}  Decision)
Date html generated:
2019_10_15-AM-10_46_54
Last ObjectModification:
2018_09_17-PM-06_45_59
Theory : basic
Home
Index