Nuprl Lemma : compact_functionality_wrt_equipollent

[T,S:Type].  (T  compact-type(T)  compact-type(S))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) equipollent: B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) and: P ∧ Q prop:
Lemmas referenced :  compact_functionality_wrt_surject surject_wf equipollent_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination productElimination dependent_pairFormation because_Cache universeEquality

Latex:
\mforall{}[T,S:Type].    (T  \msim{}  S  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  compact-type(S))



Date html generated: 2016_05_15-PM-01_46_28
Last ObjectModification: 2015_12_27-AM-00_09_54

Theory : basic


Home Index