Nuprl Lemma : compact_functionality_wrt_equipollent
∀[T,S:Type].  (T ~ S 
⇒ compact-type(T) 
⇒ compact-type(S))
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T)
, 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
compact_functionality_wrt_surject, 
surject_wf, 
equipollent_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T,S:Type].    (T  \msim{}  S  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  compact-type(S))
Date html generated:
2016_05_15-PM-01_46_28
Last ObjectModification:
2015_12_27-AM-00_09_54
Theory : basic
Home
Index