Nuprl Lemma : compact_functionality_wrt_surject

[T,S:Type].  ((∃f:T ⟶ S. Surj(T;S;f))  compact-type(T)  compact-type(S))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) surject: Surj(A;B;f) uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q compact-type: compact-type(T) all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q compose: g guard: {T} surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  bool_wf compact-type_wf exists_wf surject_wf compose_wf equal-wf-T-base all_wf equal_wf squash_wf true_wf btrue_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin functionEquality cumulativity hypothesisEquality cut introduction extract_by_obid hypothesis isectElimination sqequalRule lambdaEquality functionExtensionality applyEquality universeEquality dependent_functionElimination unionElimination inlFormation dependent_pairFormation baseClosed inrFormation equalitySymmetry imageElimination equalityTransitivity natural_numberEquality imageMemberEquality independent_isectElimination independent_functionElimination because_Cache hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T,S:Type].    ((\mexists{}f:T  {}\mrightarrow{}  S.  Surj(T;S;f))  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  compact-type(S))



Date html generated: 2017_10_01-AM-08_29_04
Last ObjectModification: 2017_07_26-PM-04_23_48

Theory : basic


Home Index