Nuprl Lemma : compact_functionality_wrt_surject
∀[T,S:Type].  ((∃f:T ⟶ S. Surj(T;S;f)) 
⇒ compact-type(T) 
⇒ compact-type(S))
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T)
, 
surject: Surj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
compact-type: compact-type(T)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
compose: f o g
, 
guard: {T}
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bool_wf, 
compact-type_wf, 
exists_wf, 
surject_wf, 
compose_wf, 
equal-wf-T-base, 
all_wf, 
equal_wf, 
squash_wf, 
true_wf, 
btrue_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
dependent_pairFormation, 
baseClosed, 
inrFormation, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T,S:Type].    ((\mexists{}f:T  {}\mrightarrow{}  S.  Surj(T;S;f))  {}\mRightarrow{}  compact-type(T)  {}\mRightarrow{}  compact-type(S))
Date html generated:
2017_10_01-AM-08_29_04
Last ObjectModification:
2017_07_26-PM-04_23_48
Theory : basic
Home
Index