Nuprl Lemma : dec2bool_wf
∀[d:Decision]. (dec2bool(d) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
dec2bool: dec2bool(d)
, 
decision: Decision
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dec2bool: dec2bool(d)
, 
decision: Decision
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf, 
decision_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[d:Decision].  (dec2bool(d)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_15-AM-10_46_49
Last ObjectModification:
2018_08_21-PM-01_57_35
Theory : basic
Home
Index