Nuprl Lemma : dl-lt_functionality

x,y,x',y':dl-Obj().  ((↑dlo_eq(x;x'))  (↑dlo_eq(y;y'))  x ≤ x' ≤ y')


Proof




Definitions occuring in Statement :  dlo_le: a ≤ b dlo_eq: dlo_eq(a;b) dl-Obj: dl-Obj() assert: b bool: 𝔹 all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q squash: T uall: [x:A]. B[x] true: True
Lemmas referenced :  assert-dlo_eq dlo_le_wf istype-assert dlo_eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination applyEquality lambdaEquality_alt imageElimination isectElimination because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed

Latex:
\mforall{}x,y,x',y':dl-Obj().    ((\muparrow{}dlo\_eq(x;x'))  {}\mRightarrow{}  (\muparrow{}dlo\_eq(y;y'))  {}\mRightarrow{}  x  \mleq{}  y  =  x'  \mleq{}  y')



Date html generated: 2019_10_15-AM-11_44_06
Last ObjectModification: 2019_04_11-PM-02_12_34

Theory : dynamic!logic


Home Index