Nuprl Lemma : assert-dlo_eq

a,b:dl-Obj().  (↑dlo_eq(a;b) ⇐⇒ b ∈ dl-Obj())


Proof




Definitions occuring in Statement :  dlo_eq: dlo_eq(a;b) dl-Obj: dl-Obj() assert: b all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q nat: uimplies: supposing a dlo_eq: dlo_eq(a;b) dlo-eq: dlo-eq() top: Top so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] dl-kind: dl-kind(d) mobj-kind: mobj-kind(x) pi1: fst(t) dl-prog-obj: prog(x) eq_atom: =a y dl-obj-prog: dl-obj-prog(x) pi2: snd(t) dl-aprog?: dl-aprog?(x) dl-label: dl-label(d) mobj-label: mobj-label(x) prec-label: prec-label(x) mobj-data: mobj-data(x) dl-aprog: atm(x) mk-prec: mk-prec(lbl;x) btrue: tt dl-aprog-1: dl-aprog-1(x) select-tuple: x.n ifthenelse: if then else fi  eq_int: (i =z j) band: p ∧b q uiff: uiff(P;Q) ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False rev_uimplies: rev_uimplies(P;Q) squash: T assert: b true: True dl-comp: (x1;x) bfalse: ff dl-comp?: dl-comp?(x) dl-choose: x1 ⋃ x dl-choose?: dl-choose?(x) dl-iterate: (x)* dl-iterate?: dl-iterate?(x) dl-test: (x)? dl-test?: dl-test?(x) dl-prop-obj: prop(x) dl-aprop: atm(x) l_member: (x ∈ l) select: L[n] cons: [a b] cand: c∧ B less_than: a < b less_than': less_than'(a;b) subtract: m dl-false: 0 dl-implies: x1  x dl-and: x1 ∧ x dl-or: x1 ∨ x dl-box: [x1] x dl-diamond: <x1> x dl-comp-1: dl-comp-1(x) dl-comp-2: dl-comp-2(x) sq_type: SQType(T) guard: {T} dl-choose-1: dl-choose-1(x) dl-choose-2: dl-choose-2(x) dl-iterate-1: dl-iterate-1(x) dl-test-1: dl-test-1(x) dl-obj-prop: dl-obj-prop(x) dl-aprop?: dl-aprop?(x) dl-aprop-1: dl-aprop-1(x) dl-false?: dl-false?(x) dl-implies?: dl-implies?(x) dl-and?: dl-and?(x) dl-or?: dl-or?(x) dl-box?: dl-box?(x) dl-diamond?: dl-diamond?(x) dl-implies-1: dl-implies-1(x) dl-implies-2: dl-implies-2(x) dl-and-1: dl-and-1(x) dl-and-2: dl-and-2(x) dl-or-1: dl-or-1(x) dl-or-2: dl-or-2(x) dl-box-1: dl-box-1(x) dl-box-2: dl-box-2(x) dl-diamond-1: dl-diamond-1(x) dl-diamond-2: dl-diamond-2(x)
Lemmas referenced :  dl-induction all_wf dl-Obj_wf iff_wf assert_wf dlo_eq_wf equal_wf subtype-TYPE istype-nat istype-assert dl-prog-obj_wf dl-prog_wf dl-prop-obj_wf dl-prop_wf dl-aprog_wf equal-wf-base-T set_subtype_base le_wf istype-int int_subtype_base dl-ind-dl-aprog istype-void assert_of_eq_int nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma istype-le eq_int_wf dl-obj-prog_wf squash_wf equal-wf-base dl-kind_wf l_member_wf cons_wf nil_wf istype-atom atom_subtype_base dl-aprog-1_wf dl-aprog?_wf btrue_wf dl-comp_wf dl-comp?_wf bfalse_wf btrue_neq_bfalse dl-choose_wf dl-choose?_wf dl-iterate_wf dl-iterate?_wf dl-test_wf dl-test?_wf length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf list_subtype_base assert_of_eq_atom dl-implies_wf dl-and_wf dl-or_wf dl-box_wf dl-diamond_wf dl-ind-dl-comp bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf assert_of_band dl-aprop_wf dl-false_wf dl-comp-1_wf dl-comp-2_wf true_wf dl-ind-dl-choose dl-choose-1_wf dl-choose-2_wf dl-ind-dl-iterate dl-iterate-1_wf dl-ind-dl-test dl-test-1_wf dl-obj-prop_wf dl-ind-dl-aprop dl-aprop-1_wf dl-aprop?_wf dl-false?_wf dl-implies?_wf dl-and?_wf dl-or?_wf dl-box?_wf dl-diamond?_wf dl-ind-dl-false istype-true dl-ind-dl-implies dl-implies-1_wf dl-implies-2_wf dl-ind-dl-and dl-and-1_wf dl-and-2_wf dl-ind-dl-or dl-or-1_wf dl-or-2_wf dl-ind-dl-box dl-box-1_wf dl-box-2_wf dl-ind-dl-diamond dl-diamond-1_wf dl-diamond-2_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality_alt hypothesis hypothesisEquality inhabitedIsType applyEquality universeIsType independent_functionElimination lambdaFormation_alt dependent_functionElimination because_Cache functionIsType productIsType equalityIstype baseApply closedConclusion baseClosed intEquality natural_numberEquality independent_isectElimination isect_memberEquality_alt voidElimination independent_pairFormation setElimination rename productElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination atomEquality tokenEquality imageMemberEquality promote_hyp hyp_replacement sqequalBase instantiate cumulativity

Latex:
\mforall{}a,b:dl-Obj().    (\muparrow{}dlo\_eq(a;b)  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2019_10_15-AM-11_43_02
Last ObjectModification: 2019_04_05-AM-11_35_36

Theory : dynamic!logic


Home Index