Nuprl Lemma : dl-obj-prop_wf
∀[x:dl-Obj()]. dl-obj-prop(x) ∈ Prop supposing dl-kind(x) = "prop" ∈ Atom
Proof
Definitions occuring in Statement :
dl-obj-prop: dl-obj-prop(x)
,
dl-kind: dl-kind(d)
,
dl-prop: Prop
,
dl-Obj: dl-Obj()
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
token: "$token"
,
atom: Atom
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
dl-Obj: dl-Obj()
,
mobj: mobj(L)
,
dl-kind: dl-kind(d)
,
mobj-kind: mobj-kind(x)
,
pi1: fst(t)
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
dl-obj-prop: dl-obj-prop(x)
,
pi2: snd(t)
,
mtype: mtype(L;i)
,
apply_alist: apply_alist(eq;L;x)
,
eager-map: eager-map(f;as)
,
list_ind: list_ind,
dl-Spec: dl-Spec()
,
cons: [a / b]
,
nil: []
,
it: ⋅
,
atom-deq: AtomDeq
,
eq_atom: x =a y
,
bfalse: ff
,
btrue: tt
,
mrec: mrec(L;i)
,
prec: prec(lbl,p.a[lbl; p];i)
,
dl-prop: Prop
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
subtype_base_sq,
atom_subtype_base,
dl-prop_wf,
istype-atom,
dl-kind_wf,
set_subtype_base,
l_member_wf,
cons_wf,
nil_wf,
dl-Obj_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
instantiate,
introduction,
extract_by_obid,
isectElimination,
cumulativity,
atomEquality,
independent_isectElimination,
hypothesis,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
hypothesisEquality,
applyEquality,
lambdaEquality_alt,
hyp_replacement,
universeIsType,
equalityIstype,
tokenEquality,
baseClosed,
sqequalBase
Latex:
\mforall{}[x:dl-Obj()]. dl-obj-prop(x) \mmember{} Prop supposing dl-kind(x) = "prop"
Date html generated:
2019_10_15-AM-11_42_38
Last ObjectModification:
2019_04_04-PM-06_18_17
Theory : dynamic!logic
Home
Index