Nuprl Lemma : dl-obj-prop_wf
∀[x:dl-Obj()]. dl-obj-prop(x) ∈ Prop supposing dl-kind(x) = "prop" ∈ Atom
Proof
Definitions occuring in Statement : 
dl-obj-prop: dl-obj-prop(x)
, 
dl-kind: dl-kind(d)
, 
dl-prop: Prop
, 
dl-Obj: dl-Obj()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
token: "$token"
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
dl-Obj: dl-Obj()
, 
mobj: mobj(L)
, 
dl-kind: dl-kind(d)
, 
mobj-kind: mobj-kind(x)
, 
pi1: fst(t)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
dl-obj-prop: dl-obj-prop(x)
, 
pi2: snd(t)
, 
mtype: mtype(L;i)
, 
apply_alist: apply_alist(eq;L;x)
, 
eager-map: eager-map(f;as)
, 
list_ind: list_ind, 
dl-Spec: dl-Spec()
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
atom-deq: AtomDeq
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
mrec: mrec(L;i)
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
dl-prop: Prop
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_base_sq, 
atom_subtype_base, 
dl-prop_wf, 
istype-atom, 
dl-kind_wf, 
set_subtype_base, 
l_member_wf, 
cons_wf, 
nil_wf, 
dl-Obj_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
atomEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
equalityIstype, 
tokenEquality, 
baseClosed, 
sqequalBase
Latex:
\mforall{}[x:dl-Obj()].  dl-obj-prop(x)  \mmember{}  Prop  supposing  dl-kind(x)  =  "prop"
Date html generated:
2019_10_15-AM-11_42_38
Last ObjectModification:
2019_04_04-PM-06_18_17
Theory : dynamic!logic
Home
Index