Nuprl Lemma : dl-sem-eq_wf
∀[a,b:Prog].  (a ≡ b ∈ ℙ')
Proof
Definitions occuring in Statement : 
dl-sem-eq: a ≡ b
, 
dl-prog: Prog
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-sem-eq: a ≡ b
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
nat_wf, 
iff_wf, 
dl-prog-sem_wf, 
istype-nat, 
dl-prog_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
universeEquality, 
cumulativity, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
lambdaEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[a,b:Prog].    (a  \mequiv{}  b  \mmember{}  \mBbbP{}')
Date html generated:
2019_10_15-AM-11_45_51
Last ObjectModification:
2019_03_26-PM-00_04_10
Theory : dynamic!logic
Home
Index