Nuprl Lemma : dl-sem-eq_wf

[a,b:Prog].  (a ≡ b ∈ ℙ')


Proof




Definitions occuring in Statement :  dl-sem-eq: a ≡ b dl-prog: Prog uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dl-sem-eq: a ≡ b prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q
Lemmas referenced :  nat_wf iff_wf dl-prog-sem_wf istype-nat dl-prog_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality universeEquality cumulativity extract_by_obid hypothesis hypothesisEquality sqequalHypSubstitution isectElimination thin applyEquality lambdaEquality_alt axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[a,b:Prog].    (a  \mequiv{}  b  \mmember{}  \mBbbP{}')



Date html generated: 2019_10_15-AM-11_45_51
Last ObjectModification: 2019_03_26-PM-00_04_10

Theory : dynamic!logic


Home Index