Nuprl Lemma : dl-valid-box-test-implies
∀phi,psi:Prop.  (|= [(psi)?] phi 
⇒ |= psi 
⇒ phi)
Proof
Definitions occuring in Statement : 
dl-valid: |= phi
, 
dl-box: [x1] x
, 
dl-implies: x1 
⇒ x
, 
dl-test: (x)?
, 
dl-prop: Prop
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dl-valid: Error :dl-valid, 
member: t ∈ T
, 
dl-sem: Error :dl-sem, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
istype-void, 
istype-atom, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
functionIsType
Latex:
\mforall{}phi,psi:Prop.    (|=  [(psi)?]  phi  {}\mRightarrow{}  |=  psi  {}\mRightarrow{}  phi)
Date html generated:
2019_10_15-AM-11_45_26
Last ObjectModification:
2019_03_26-AM-11_28_46
Theory : dynamic!logic
Home
Index