Nuprl Lemma : dl-valid_wf

[phi:Prop]. (|= phi ∈ ℙ')


Proof




Definitions occuring in Statement :  dl-valid: |= phi dl-prop: Prop uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dl-valid: |= phi prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  nat_wf dl-prop-sem_wf istype-nat subtype_rel_self dl-prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality universeEquality cumulativity extract_by_obid hypothesis hypothesisEquality applyEquality sqequalHypSubstitution isectElimination thin lambdaEquality_alt instantiate axiomEquality equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[phi:Prop].  (|=  phi  \mmember{}  \mBbbP{}')



Date html generated: 2019_10_15-AM-11_44_11
Last ObjectModification: 2019_03_27-AM-00_13_57

Theory : dynamic!logic


Home Index