Nuprl Lemma : dl-valid_wf
∀[phi:Prop]. (|= phi ∈ ℙ')
Proof
Definitions occuring in Statement : 
dl-valid: |= phi
, 
dl-prop: Prop
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-valid: |= phi
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
dl-prop-sem_wf, 
istype-nat, 
subtype_rel_self, 
dl-prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
universeEquality, 
cumulativity, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
instantiate, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[phi:Prop].  (|=  phi  \mmember{}  \mBbbP{}')
Date html generated:
2019_10_15-AM-11_44_11
Last ObjectModification:
2019_03_27-AM-00_13_57
Theory : dynamic!logic
Home
Index