Nuprl Lemma : co-list-cases2
∀[T:Type]. ∀x:colist(T). ((x = Ax ∈ colist(T)) ∨ (∃t:T. ∃y:colist(T). (x = <t, y> ∈ colist(T))))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
pair: <a, b>
, 
universe: Type
, 
equal: s = t ∈ T
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
or: P ∨ Q
, 
it: ⋅
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
colist-ext, 
subtype_rel_b-union-right, 
unit_wf2, 
colist_wf, 
it_wf, 
subtype_rel_b-union-left, 
unit_subtype_colist, 
subtype_rel_transitivity, 
b-union_wf, 
co-list-subtype, 
subtype-respects-equality, 
product_subtype_colist, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
productEquality, 
sqequalRule, 
productIsType, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
imageElimination, 
unionElimination, 
equalityElimination, 
inlEquality_alt, 
axiomEquality, 
independent_isectElimination, 
equalityIstype, 
baseClosed, 
independent_pairEquality, 
sqequalBase, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
inrEquality_alt, 
dependent_pairEquality_alt, 
equalityTransitivity, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:colist(T).  ((x  =  Ax)  \mvee{}  (\mexists{}t:T.  \mexists{}y:colist(T).  (x  =  <t,  y>)))
Date html generated:
2020_05_20-AM-09_07_47
Last ObjectModification:
2019_12_31-PM-07_06_24
Theory : eval!all
Home
Index