Nuprl Lemma : co-list-cases2

[T:Type]. ∀x:colist(T). ((x Ax ∈ colist(T)) ∨ (∃t:T. ∃y:colist(T). (x = <t, y> ∈ colist(T))))


Proof




Definitions occuring in Statement :  colist: colist(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q pair: <a, b> universe: Type equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B implies:  Q b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) or: P ∨ Q it: guard: {T} uimplies: supposing a exists: x:A. B[x] respects-equality: respects-equality(S;T)
Lemmas referenced :  colist-ext subtype_rel_b-union-right unit_wf2 colist_wf it_wf subtype_rel_b-union-left unit_subtype_colist subtype_rel_transitivity b-union_wf co-list-subtype subtype-respects-equality product_subtype_colist istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination lambdaEquality_alt applyEquality hypothesis productEquality sqequalRule productIsType universeIsType because_Cache inhabitedIsType imageElimination unionElimination equalityElimination inlEquality_alt axiomEquality independent_isectElimination equalityIstype baseClosed independent_pairEquality sqequalBase equalitySymmetry dependent_functionElimination independent_functionElimination inrEquality_alt dependent_pairEquality_alt equalityTransitivity instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:colist(T).  ((x  =  Ax)  \mvee{}  (\mexists{}t:T.  \mexists{}y:colist(T).  (x  =  <t,  y>)))



Date html generated: 2020_05_20-AM-09_07_47
Last ObjectModification: 2019_12_31-PM-07_06_24

Theory : eval!all


Home Index