Nuprl Lemma : co-list-islist-islist-new-compactness-base
∀[T:Type]. ∀[t:co-list-islist(T)].  islist(t)
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
islist: islist(t)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
islist: islist(t)
, 
has-value: (a)↓
Lemmas referenced : 
co-list-islist-islist, 
co-list-islist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomSqleEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:co-list-islist(T)].    islist(t)
Date html generated:
2016_05_15-PM-10_11_19
Last ObjectModification:
2015_12_27-PM-05_58_17
Theory : eval!all
Home
Index