Nuprl Lemma : co-list-islist-islist

[T:Type]. ∀[t:co-list-islist(T)].  islist(t)


Proof




Definitions occuring in Statement :  co-list-islist: co-list-islist(T) islist: islist(t) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q prop: islist: islist(t) has-value: (a)↓
Lemmas referenced :  co-list-islist-ext-list subtype_rel_weakening co-list-islist_wf list_wf islist-list equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis cumulativity independent_isectElimination sqequalRule lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomSqleEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:co-list-islist(T)].    islist(t)



Date html generated: 2018_05_21-PM-10_20_21
Last ObjectModification: 2017_07_26-PM-06_37_24

Theory : eval!all


Home Index