Nuprl Lemma : co-list-islist-islist
∀[T:Type]. ∀[t:co-list-islist(T)].  islist(t)
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
islist: islist(t)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
islist: islist(t)
, 
has-value: (a)↓
Lemmas referenced : 
co-list-islist-ext-list, 
subtype_rel_weakening, 
co-list-islist_wf, 
list_wf, 
islist-list, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
cumulativity, 
independent_isectElimination, 
sqequalRule, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomSqleEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:co-list-islist(T)].    islist(t)
Date html generated:
2018_05_21-PM-10_20_21
Last ObjectModification:
2017_07_26-PM-06_37_24
Theory : eval!all
Home
Index