Nuprl Lemma : has-value-is-list-map-if-has-value-is-list

[T:Type]. ∀[t:colist(T)]. ∀[f:Base].  ((is-list(t))↓  (is-list(map(f;t)))↓)


Proof




Definitions occuring in Statement :  is-list: is-list(t) map: map(f;as) colist: colist(T) has-value: (a)↓ uall: [x:A]. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top implies:  Q uimplies: supposing a bool: 𝔹 prop:
Lemmas referenced :  is-list-map has-value_wf-partial bool_wf union-value-type unit_wf2 is-list_wf base_wf colist_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation independent_isectElimination because_Cache cumulativity hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[f:Base].    ((is-list(t))\mdownarrow{}  {}\mRightarrow{}  (is-list(map(f;t)))\mdownarrow{})



Date html generated: 2018_05_21-PM-10_19_48
Last ObjectModification: 2017_07_26-PM-06_37_14

Theory : eval!all


Home Index