Nuprl Lemma : int-atom-disjoint
¬ℤ ⋂ Atom
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
not: ¬A
, 
int: ℤ
, 
atom: Atom
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
false: False
Lemmas referenced : 
isect2_decomp, 
bfalse_wf, 
btrue_neq_bfalse, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
atomEquality, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_pairFormation, 
isintReduceTrue, 
isintReduceAtom, 
sqequalRule, 
independent_functionElimination, 
voidElimination
Latex:
\mneg{}\mBbbZ{}  \mcap{}  Atom
Date html generated:
2016_05_15-PM-10_08_03
Last ObjectModification:
2015_12_27-PM-06_00_18
Theory : eval!all
Home
Index